top of page

* Indicates students in The Neurophysiology and Imaging Lab

  1. Ramdeo, K. R.*, Rehsi, R. S.*, Foglia, S. D.*, Turco, C. V.*, Toepp, S. L.*, & Nelson, A. J. (2023). Experimental environment improves the reliability of short-latency afferent inhibition. Plos one, 18(2), e0281867.

  2. Adams, F. C.*, Pickersgill, J. W.*, Turco, C. V.*, Foglia, S. D., Toepp*, S. L., Rehsi, R. R.*, Ramdeo, K. R., ... & Nelson, A. J. (2023). Tactile sensorimotor training does not alter short-and long-latency afferent inhibition. NeuroReport, 34(3), 123-127.

  3. Rehsi, R. S.*, Ramdeo, K. R.*, Foglia, S. D.*, Turco, C. V.*, Adams, F. C.*, Toepp, S. L.*, & Nelson, A. J. (2023). Investigating the intra-session reliability of short and long latency afferent inhibition. Clinical Neurophysiology Practice, 8, 16-23.

  4. Foglia, S. D*., Rehsi, R. S*., Turco, C. V*., Shanthanna, H., & Nelson, A. J. (2022). Case report: The feasibility of rTMS with intrathecal baclofen pump for the treatment of unresolved neuropathic pain following spinal cord injury. Frontiers in rehabilitation sciences, 3, 893014. https://doi.org/10.3389/fresc.2022.893014

  5. Pickersgill, J. W.*, Turco, C. V.*, Ramdeo, K.*, Rehsi, R. S.*, Foglia, S. D.*, & Nelson, A. J. (2022). The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Frontiers in psychology, 13, 831819. https://doi.org/10.3389/fpsyg.2022.831819

  6. Toepp, S. L.*, Turco, C. V.*, Rehsi, R. S.*, & Nelson, A. J. (2021). The distribution and reliability of TMS-evoked short- and long-latency afferent interactions. PloS one, 16(12), e0260663. https://doi.org/10.1371/journal.pone.0260663

  7. Turco, C. V.*, Rehsi, R. S.*, Locke, M. B.*, & Nelson, A. J. (2021). Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS. Brain Research, 1771, 147657.

  8. Dans, P. W.*, Foglia, S. D.*, & Nelson, A. J. (2021). Data Processing in Functional Near-Infrared Spectroscopy (fNIRS) Motor Control Research. Brain sciences, 11(5), 606. https://doi.org/10.3390/brainsci11050606

  9. Turco CV*, & Nelson AJ (2021). Transcranial magnetic stimulation to assess exercise-Induced neuroplasticity. Frontiers in Neuroergonomics. 5(2). doi: 10.3389/fnrgo.2021.2:679033

  10. Nicolini C, & Nelson AJ (2021). Current methodological pitfalls and caveats in the assessment of exercise-induced changes in peripheral brain-derived neurotrophic factor: How result reproducibility can be improved. Frontiers in Neuroergonomics. 5(2). doi: 10.3389/fnrgo.2021.678541

  11. Nicolini C, Fahnestock M, Gibala MJ, & Nelson AJ (2021). Understanding the neurophysiological and molecular mechanisms of exercise-induced neuroplasticity in cortical and descending motor pathways: Where do we stand?. Neuroscience, 457, 259–282. 

  12. Turco CV*, Toepp SL*, Foglia SD*, Dans PW*, & Nelson, AJ (2021). Association of short- and long-latency afferent inhibition with human behavior. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 132(7), 1462–1480. 

  13. Dans PW*, Foglia SD*, & Nelson AJ (2021). Data processing in functional near-infrared spectroscopy (fNIRS) motor control research. Brain sciences, 11(5), 606. 

  14. Turco CV*, Arsalan SO, & Nelson AJ (2020). The influence of recreational substance use in TMS research. Brain Sciences,10: 751.

  15. Locke MB*, Toepp SL*, Turco CV*, Harasym DH*, Rathbone MP, Noseworthy MD, & Nelson AJ (2020). Altered motor system function in post-concussion syndrome as assessed via transcranial magnetic stimulation. Clinical Neurophysiology Practice, In Press.

  16. Harasym D*, Turco CV*, Nicolini C*, Toepp SL*, Jenkins EM, Gibala MJ, Noseworthy MD, & Nelson AJ (2020). Fitness level influences white matter microstructure in postmenopausal women. Frontiers in Aging Neuroscience, 12:129.

  17. Nicolini C*, Michelski B, Toepp S*, Turco CV*, D'hoine T*, Gibala MJ, & Nelson AJ (2020). A single bout of high-intensity interval exercise increases corticospinal excitability, brain-derived neurotrophic factor and uncarboxylated osteocalcin in sedentary, healthy males. Neuroscience, 437:242-255.

  18. El-Sayes J*, Turco CV*, Skelly LE, Locke MB*, Gibala MJ, & Nelson AJ (2020). Acute high-intensity and moderate-intensity interval exercise do not change corticospinal excitability in low fit, young adults. PLOS One, 15(1): e0227581.

  19. Toepp SL*, Turco CV*, Locke MB*, Nicolini C*, Ravi R, & Nelson AJ (2019). The impact of glucose on corticospinal and intracortical excitability. Brain Sciences, 9(12): 339.

  20. Turco CV*, Pesevski A, McNicholas PD, Beaulieu LD, & Nelson AJ (2019). Reliability of transcranial magnetic stimulation measures of afferent inhibition. Brain Research, 1723(146394).

  21. Nicolini C*, Toeppe S*, Harasym D*, Michalski B, Fahnestock M, Gibala MJ, & Nelson AJ (2019). No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of high-intensity interval training in sedentary males. Physiological Reports, 7(11): e14140.

  22. Turco CV*, Fassett HJ*, Locke MB*, El-Sayes J*, & Nelson AJ. (2019). Parallel modulation of interhemispheric inhibition and the size of a cortical hand muscle representation during active contraction. Journal of Neurophysiology. In Press.

  23. El-Sayes J*, Turco CV*, Skelly LE, Nicolini C*, Fahnestock M, Gibala MJ, & Nelson AJ (2019). The effects of biological sex and ovarian hormones on exercise-induced neuroplasticity. Neuroscience, 410: 29-40.

  24. Nicolini C*, Harasym D*, Turco CV*, & Nelson AJ (2019). Human motor cortical organization is influenced by handedness. Cortex, 115: 172-183.

  25. Fassett HJ*, Turco CV*, El-Sayes J*, & Nelson AJ (2018). Alterations in motor cortical representation of muscles following incomplete spinal cord injury in humans. Brain Sciences, 8: 225.

  26. Turco CV*, El-Sayes J*., Locke MB*, Chen R., Baker S., & Nelson AJ (2018). Effects of lorazepam and baclofen on short-and long-latency afferent inhibition. Journal of Physiology, 596(21): 5267-5280. 

  27. Nelson AJ, Hoque T, Gunraj C, & Chen R (2018). Altered somatosensory processing in Parkinson's disease and modulation by dopaminergic medications. Parkinsonism and Related Disorders, 53: 76-81. Link: https://authors.elsevier.com/a/1Xej94pqQOPQbd

  28. Turco CV*, Locke MB*, El-Sayes J*, Tommerdahl M, Nelson AJ. (2018). Exploring behavioral correlates of afferent inhibition. Brain Sciences, 8(4): 64. doi: 10.3390/brainsci8040064.

  29. El-Sayes J*, Harasym D*, Turco CV, Locke MB*, Nelson AJ. (2018). Exercise-induced neuroplasticity: a mechanistic model and prospects for promoting plasticity. Neuroscientist. doi: 10.1177/1073858418771538.

  30. Ah Sen CB, Fassett HJ, El-Sayes J*, Turco CV*, Hameer MM, & Nelson AJ (2017). Active and resting motor threshold are efficiently obtained with adaptive threshold hunting. PloS ONE, 12(10): e0186007. doi: 10.1371/journal.pone.0186007. eCollection 2017.

  31. Turco CV*, El-Sayes J*, Savoie MS*, Fassett HJ*, Locke MB*, Nelson AJ (2017). Short- and Long-Latency Afferent Inhibition: Uses, Mechanisms, and Influencing Factors. Brain Stimulation, 11(1): 59-74; doi: 10.1016/j.brs.2017.09.009. 

  32. Fassett, HJ*, Turco CV*, El-Sayes J*, Lulic T, Richardson B, Baker S, Nelson AJ (2017). Transcranial Magnetic Stimulation with Intermittent Theta Burst Stimulation Alters Corticospinal Output in Patients with Chronic Incomplete Spinal Cord Injury. Frontiers in Neurology:380. doi: 10.3389/fneur.2017.00380. eCollection 2017.

  33. Turco CV*, El-Sayes J*, Fassett HJ*, Chen R, Nelson AJ (2017). Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley. Journal of Neurophysiology, 118(1): 610-618; doi:10.1152/jn.00118.2017.

  34. Lulic T, El-Sayes J*, Fassett HJ*, Nelson AJ (2017). Physical activity levels determine exercise-induced changes in brain excitability. PLoS ONE, 12(3): e0173672. doi:10.1371/journal.pone.0173672

  35. El-Sayes J* & Nelson AJ (2017). Auditory Brainstem Responses to Predict Literacy. Clin Neurophysiol, 128(3):480-481. 

  36. Bailey AZ*, Fassett HJ*, Lulic T*, El-Sayes J*, Nelson AJ (2016). Non-invasive Brain Stimulation to Characterize and Alter Motor Function after Spinal Cord Injury. In "Recovery of Motor Function in Spinal Cord Injury", ISBN 978-953-51-4725-1, In-Tech Open Science. 

  37. Nelson AJ (2016). Alterations in transcallosal communication following concussion. Clin Neurophysiol, 127(10):3362-3.

  38. Mackenzie T*, Bailey AZ*, Mi P*, Tsang P*, Jones CB*, Nelson AJ (2016). Human area 5 modulates corticospinal output during movement preparation. NeuroReport, 7(14):1056-60.

  39. Bailey AZ*, Asmussen MJ*, Nelson AJ (2016). Short-latency afferent inhibition determined by the sensory afferent volley. Journal of Neurophysiology, 116(2):637-44.

  40. Fassett H* & Nelson AJ (2016). Relationship between intracortical inhibition and motor behavior; implications for incomplete spinal cord injury. Neurotransmitter 

  41. Jones CB*, Lulic T, Bailey AZ*, MacKenzie TN*, Mi YQ*, Tommerdahl M, Nelson AJ (2016). Metaplasticity in human primary somatosensory cortex:  effects on physiology and tactile perception. Journal of Neurophysiology, 115(5):2681-91. 

  42. Mi P*, Bailey AZ*, Nelson AJ (2016). Short- and Long-Intracortical Inhibition in Incomplete Spinal Cord Injury. Canadian Journal of Neurological Sciences, 43(1):183-91. 

  43. Asmussen M*, Bergel T, Bailey AZ*, Keir PJ, Potvin J, Nelson AJ (2016). Combining multiple data acquisition systems to study corticospinal output and multi-segment biomechanics. Journal of Visualized Experiments.

  44. Bailey AZ*, Mi YQ*, Nelson AJ. Short-latency afferent inhibition in chronic spinal cord injury. Translational Neuroscience, 6(1):235-243. Impact factor: 1.31.

  45. Asmussen MJ*, Bailey AZ*, Nelson AJ (2015). Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques. Neuroscience, 311:268-83.

  46. Tsang P*, Bailey AZ*, Nelson AJ (2015). Rapid-Rate Paired Associative Stimulation over the Primary Somatosensory Cortex. PLOS One, 10(3):e0120731.

  47. Jones CB* & Nelson AJ. (2014). Promoting plasticity in the somatosensory cortex to alter motor physiology. Translational Neuroscience, 5(4): 260-268.

  48. Asmussen MJ*, Zapallow CM*, Jacobs MF*, Lee KG*, Tsang P*, Nelson AJ. (2014). Modulation of short-latency afferent inhibition depends on digit and task-relevance. PLOS One, 9(8): e104807.

  49. Bailey A*, Mi P*, Nelson AJ. (2014). Transcranial Magnetic Stimulation to Investigate Motor Cortical Circuitry and Plasticity in Spinal Cord Injury. Journal of Neurology and Stroke, 1(2): 1-11.

  50. Tsang P*, Jacobs MF*, Lee KG*, Asmussen MJ*, Zapallow CM*, Nelson AJ. (2014). Continuous theta-burst over primary somatosensory cortex modulates short-latency afferent inhibition. Clinical Neurophysiology, 125(11):2253-9.

  51. Jacobs MF*, Tsang P*, Lee KGH*, Asmussen MJ*, Zapallow CM*, Nelson AJ. 30 Hz theta-burst stimulation over primary somatosensory cortex modulates corticospinal output to the hand. Brain Stimulation, 7(2):269-74.

  52. Lee KG*, Jacobs MF*, Asmussen MJ*, Zapallow CM*, Tommerdahl M, Nelson AJ (2013). Continuous theta-burst stimulation modulates tactile syncrhonization. BMC Neuroscience, 14:89. doi:10.1186/1471-2202-14-89.

  53. Asmussen MJ*, Jacobs MF*, Lee KGH*, Zapallow CM*, Nelson AJ (2013). Short-latency afferent inhibition modulation during finger movement. PLoS ONE, 8(4): e60496. PubMed Identifier: 23593228.

  54. Zapallow CM*, Jacobs MF*, Lee KGH*, Asmussen MJ*, Tsang P*, Nelson AJ (2013). Continuous theta-burst stimulation over primary somatosensory cortex modulates interhemispheric inhibition. NeuroReport, 24(7): 394-8. PubMed Identifier: 23568220.

  55. Zapallow CM*, Asmussen MJ*, Bolton DA, Lee KG*, Jacobs MF*, Nelson AJ (2012). Theta burst repetitive transcranial magnetic stimulation attenuates somatosensory evoked potentials from the lower limb. BMC Neuroscience 13:133 

  56. Jacobs MF*, Zapallow CM*, Tsang P*, Lee KG*, Asmussen MJ*, Nelson AJ (2012). Current direction specificity of continuous 𝛉-burst stimulation in modulating human motor cortex excitability when applied to somatosensory cortex. NeuroReport, 23(16):927-31. PubMed Identifier: 22955142.

  57. Jacobs MF*, Premji A*, Nelson AJ (2012). Plasticity-inducing TMS protocols to investigate somatosensory control of hand function. Neural Plasticity: e350574. PubMed Identifier: 22666612.

  58. Nelson AJPremji A*, Rai N*, Hoque T*, Tommerdahl MChen R (2012). Dopamine alters tactile perception in Parkinson's disease. Can J Neurol Sci, 39(1):52-7. PubMed Identifier: 22384496.

  59. Rai N*, Premji A*, Tommerdahl MNelson AJ (2012). Continuous theta-burst rTMS over primary somatosensory cortex modulates tactile perception on the hand. Clinical Neurophysiology, 123(6):1226-33. PubMed Identifier: 22100859.

  60. Premji A*, Zapallow C*, Tsang P*, Tang R*, Jacobs M*, Nelson AJ (2011) Influence of area 5 on interhemispheric inhibition. Neuroreport, 22(18):974-8. PubMed Identifier: 22027515

  61. Premji A*, Rai N*, Nelson A (2011). Area 5 influences excitability within the primary motor cortex in humans. PLoS One, 6(5):e20023. PubMed Identifier: 21603571.

  62. Premji A*, Ziluk A*, Nelson AJ (2010). Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation. BMC Neuroscience, 11:91. PubMed Identifier: 20687949.

  63. Ziluk A*, Premji A*, Nelson AJ (2010). Functional connectivity from area 5 to primary motor cortex via paired-pulse transcranial magnetic stimulation. Neuroscience Letters, 484(1):81-85. PubMed Identifier: 20709145

  64. Nelson AJ, Hoque T, Gunraj CA, Ni Z, Chen R (2010). Impaired Interhemispheric Inhibition in Writer’s Cramp. Neurology, 75(5):441-447. PubMed Identifier: 20679637.

  65. Nelson AJ, Blake D, Chen R (2009). Digit-specific aberrations in the somatosensory cortex in Writer’s Cramp. Annals of Neurology, 66(2):146-54. PubMed Identifier: 19743446.

  66. Nelson AJ, Chen R (2008). Digit somatotopy within cortical areas of the postcentral gyrus in humans. Cerebral Cortex, 18:2341-51. PubMed Identifier: 18245039.

OUR PUBLICATIONS

bottom of page